Abstract
Nowadays, rattle-like or so-called yolk-shell nanostructures have set off a new wave of research in view of their prominent features including large surface area, tunable void and flexible functional core, etc. Herein, rattle-like mesoporous silica nanoparticles (RMSNs) with a pure silica core, a hollow cavity and a mesoporous shell have been successfully fabricated via a surfactant-assisted selective etching strategy. The synthetic approach involves the preparation of solid silica spheres with three-layer different structural silica containing the inner core of pure silica, middle layer of hybrid silica and outer shell of surfactant/SiO2 composite, followed by a hydrothermal treatment in hot water. The resulting products show a distinct rattle-like structure and spherical morphology. The average diameter, the shell thickness, and the solid core size of RMSNs are about 290, 35 and 90nm, respectively. During the etching process, the surfactant with different length of alkyl chain (CnTAB, e.g. cetyltrimethylammonium bromide) in outer shell plays a decisive role for the formation of rattle-like structure. Benefiting from the residual amino groups in RMSNs, Au@RMSNs composites can be further constructed by in-situ generating Au nanoparticles into their hollow cavity, demonstrating an excellent catalytic performance for reduction of 4-nitrophenol. Additionally, RMSNs also show a strong ability for adsorption of rhodamine B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.