Abstract

ZnS thin films composed of porous nanoparticles have been deposited on to glass substrates by combining three simple synthesis methodologies i.e. chemical bath deposition, co-precipitation and spin coating. The XRD results reveal the cubic phase of ZnS thin films crystallized at nano scale. The crystallite size estimated by Scherrer formula was 3.4 nm. The morphology of the samples was analyzed through scanning electron microscopy (SEM) and is evident that thin films are composed of porous nanoparticles with an average size of 150 nm and pores of 40 nm on almost every grain. Crystallinity, phase and morphology were further confirmed via transmission electron microscopy (TEM). The stoichiometry and phase purity of thin films were determined by energy dispersive X-ray (EDX) spectrum and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The surface topography and homogeneity of thin films were analyzed by atomic force microscopy (AFM) and obtained root mean square roughness (4.0326 nm) reveals the morphologically homogeneous growth of ZnS on glass substrates. The UV–Vis spectroscopy and photoluminescence (PL) were carried out to estimate the band gap and observe the emission spectra in order to speculate the viability of ZnS porous nanoparticles in optoelectronic devices and sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call