Abstract

Novel surfactant-activated magnetic cross-linked enzyme aggregates of Thermomyces lanuginosus lipase (TLL-magnetic-CLEAs) were developed and provided an efficient approach to improve the activity and stability of lipase for biodiesel production. In the methanolysis of Jatropha oil for biodiesel synthesis, the maximum yield in isopropyl ether was 88% after 48h at 40°C, representing 3.5-fold and 2.5-fold higher activity than that exhibited by free TLL and TLL CLEAs, respectively. Moreover, Tween 80-activated TLL-magnetic-CLEAs retained their activity during storage at 4°C for 11 weeks and 10 cycles of repeated 48h biodiesel reactions at 40°C (over 30 days). Additionally, the surface morphology, particle size and loading of lipase aggregates were confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The combination of interfacial activation, high specific enzyme activity, improved stability and easy recovery of magnetic CLEAs presents an attractive process for lipase immobilization and provides a promising catalyst for biodiesel production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call