Abstract

Abstract Adsorption of phenol from dilute solutions has been studied on porous and nonporous carbons, as well as on ion-exchange resins. At a given equilibrium concentration, uptake of phenol on nonporous carbons per unit area is determined by the nature of the carbon surface. Phenol uptake on porous activated carbons decreases sharply upon surface oxidation. However, progressive elimination of chemisorbed oxygen from the oxidized carbon upon heat treatment at increasing temperatures in N2 increases the phenol adsorption capacity. The capacity is further enhanced if following heat treatment in N2 at 950 [ddot]C the samples are reacted with H2 at 300 [ddot]C. The mechanism of phenol adsorption on carbons has been discussed. Activated carbons are more effective adsorbents for phenol than commercial ion-exchange resins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call