Abstract
In this work, we investigate the problem of finding surfaces in the Lorentz-Minkowski 3-space with prescribed skew ($S$) and mean ($H$) curvatures, which are defined through the discriminant of the characteristic polynomial of the shape operator and its trace, respectively. After showing that $H$ and $S$ can be interpreted in terms of the expected value and standard deviation of the normal curvature seen as a random variable, we address the problem of prescribed curvatures for surfaces of revolution. For surfaces with a non-lightlike axis and prescribed $H$, the strategy consists in rewriting the equation for $H$, which is initially a nonlinear second order Ordinary Differential Equation (ODE), as a linear first order ODE with coefficients in a certain ring of hypercomplex numbers along the generating curves: complex numbers for curves on a spacelike plane and Lorentz numbers for curves on a timelike plane. We also solve the problem for surfaces of revolution with a lightlike axis by using a certain ODE with real coefficients. On the other hand, for the skew curvature problem, we rewrite the equation for $S$, which is initially a nonlinear second order ODE, as a linear first order ODE with real coefficients. In all the problems, we are able to find the parameterization for the generating curves in terms of certain integrals of $H$ and $S$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.