Abstract

We study surfaces in \({\mathbb{R}^4}\) whose tangent spaces have constant principal angles with respect to a plane. Using a PDE we prove the existence of surfaces with arbitrary constant principal angles. The existence of such surfaces turns out to be equivalent to the existence of a special local symplectomorphism of \({\mathbb{R}^2}\). We classify all surfaces with one principal angle equal to 0 and observe that they can be constructed as the union of normal holonomy tubes. We also classify the complete constant angles surfaces in \({\mathbb{R}^4}\) with respect to a plane. They turn out to be extrinsic products. We characterize which surfaces with constant principal angles are compositions in the sense of Dajczer-Do Carmo. Finally, we classify surfaces with constant principal angles contained in a sphere and those with parallel mean curvature vector field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.