Abstract

ABSTRACTMethodical and intensive surface plasmon (SP) excitation trials were carried out on various dielectric‐metal interfaces to optimize plasmonic photocurrent enhancements in organic P3HT‐PCBM photovoltaic thin films. The SPs were optically excited via the diffraction grating method using single, crossed, and parallel grating schemes, with trials yielding optimal grating and film thickness parameters. Photocurrent enhancements up to 355% were demonstrated with TM‐polarized incident light on single and parallel grating structures, while both TM and TE‐polarized incident light enhancements were present on crossed grating structures. When compared with the photocurrent enhancements seen on single gratings, those seen on parallel gratings were comparable in magnitude but were shown over a broader optical band. This broadening of the optical band was due to the simultaneous SP excitations by the two superimposed gratings in the parallel scheme. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.