Abstract

ABSTRACT The six surface-piercing salt domes of interior North Oman form prominent topographic and geological features in an otherwise flat, rocky desert environment. These domes in the central part of the Ghaba Salt Basin have been known since the 1950s but very little data has been published on them. Our geological survey in 2001 provided significant new lithological, stratigraphic, and sedimentological information on the rocks exposed in the domes. This paper provides a comprehensive overview of the morphology, geometry, structural geology and geological evolution of the salt domes. Furthermore, it incorporates relevant information from unpublished subsurface studies to place the new geological field data in the context of ongoing exploration for deep hydrocarbon plays in Oman. A wide variety of rocks is exposed in the salt domes: carbonates, clastics (conglomerates, sandstones, siltstones and clays), volcanics, evaporites and ‘caprocks’. Constituent rocks and structural style vary considerably from one dome to another, but at the surface the main lithological elements of the diapirs are carbonates and evaporites of the ‘Infracambrian’ (Late Precambrian to Early Cambrian) Ara Group, the uppermost unit of the Huqf Supergroup. Very large exotic blocks of bedded Ara carbonates––commonly hundreds of meters long––are well-exposed and form distinctive hills and ridges, thus allowing detailed field observations on intra-salt carbonate ‘stringers’ that have been carried up by rising diapiric salt. A close correlation exists between the facies of the carbonate exotics in the salt domes and Ara ‘stringer’ carbonates penetrated and extensively cored in recent deep exploration wells in the South Oman Salt Basin. This demonstrates the regional significance of the salt domes for the intra-salt ‘stringer’ hydrocarbon play in Oman. Our work has implications for the prospectivity of other ‘Infracambrian’ evaporite basins in Oman, and possibly also for time-equivalent (‘Hormuz’) salt basins elsewhere in the Middle East.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call