Abstract
The development of visible-light-responsive semiconductor-based photoelectrodes is a prerequisite for the construction of efficient photoelectrochemical (PEC) cells for solar water splitting. Surface modification with an electrocatalyst on the photoelectrode is effective for maximizing the water splitting efficiency of the PEC cell. Herein, we investigate the effects of surface modification of Ta3N5 photoanodes with electrocatalysts consisting of Ni, Fe, and Co oxides, and their mixture, on the PEC oxygen evolution reaction (OER) performance. Among the investigated samples, NiFeOx-modified Ta3N5 (NiFeOx/Ta3N5) photoanodes showed the lowest onset potential for OER. A PEC cell with a parallel configuration consisting of a NiFeOx/Ta3N5 photoanode and an Al-doped La5Ti2Cu0.9Ag0.1S5O7 (LTCA:Al) photocathode exhibited stoichiometric hydrogen and oxygen generation from water splitting, without any external bias voltage. The solar-to-hydrogen energy conversion efficiency (STH) of this cell for water splitting was found to be 0.2% at 1 min after the start of the reaction. In addition, water splitting by a PEC cell with a tandem configuration incorporating a NiFeOx/Ta3N5 transparent photoanode prepared on a quartz insulating substrate as a front-side electrode and a LTCA:Al photocathode as a back side electrode was demonstrated, and the STH was found to be 0.04% at the initial stage of the reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.