Abstract

The isotherm of ferritin adsorption onto a hydrophobic surface was studied by transmission electron microscopy. Adsorbed ferritin was found to be distributed in molecular clusters. The adsorption process was diffusion-rate-limited after 20 h adsorption time at bulk concentrations below 1 mg/1. The clusters formed during the diffusion-rate-limited adsorption had a fractal dimension D approximately 1.0 when averaged over all clusters. The pair distribution function g(r) showed an increased probability of finding nearest neighbours at distances less than 30 nm. The surface concentration of adsorbed ferritin was weakly dependent on the bulk concentration of ferritin in the range 10 mg/1-10 g/1 and the average number of nearest neighbour molecules was constant in this concentration range. The mass distribution of adsorbed ferritin c(r) had a fractal dimension D = 1.8 at a bulk concentration of 10 g/l and a surface concentration corresponding to theta = 0.45 +/- 0.05. The pair correlation function g(r) showed decreasing probability of finding nearest neighbour molecules over long distances as in percolating clusters. The results indicate that ferritin adsorbs strongly to the surface at low surface concentrations and weakly at high surface concentrations. The stability of ferritin adsorption was correlated to the average number of nearest neighbour molecules, indicating a possibility that desorption is a critical supramolecular phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call