Abstract
Electrochemical CO2 reduction in acidic electrolytes is a promising strategy to achieve high utilization efficiency of CO2. Although alkali cations in acidic electrolytes play a vital role in suppressing hydrogen evolution and promoting CO2 reduction, they also cause precipitation of bicarbonate on the gas diffusion electrode (GDE), flooding of electrolyte through the GDE, and drift of the electrolyte pH. In this work, we realize the electroreduction of CO2 in a metal cation-free acidic electrolyte by covering the catalyst with cross-linked poly-diallyldimethylammonium chloride. This polyelectrolyte provides a high density of cationic sites immobilized on the surface of the catalyst, which suppresses the mass transport of H+ and modulates the interfacial field strength. By adopting this strategy, the Faradaic efficiency (FE) of CO reaches 95 ± 3% with the Ag catalyst and the FE of formic acid reaches 76 ± 3% with the In catalyst in a 1.0 pH electrolyte in a flow cell. More importantly, with the metal cation-free acidic electrolyte the amount of electrolyte flooding through the GDE is decreased to 2.5 ± 0.6% of that with alkali cation-containing acidic electrolyte, and the FE of CO maintains above 80% over 36 h of operation at −200 mA·cm−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.