Abstract

Polypropylene (PP) surgical mesh has attracted vast attention due to its chemical inertness and excellent mechanical properties. However, improvement is necessary to enhance its biocompatibility and to prevent unwanted tissue adhesion. This study addresses these issues through surface modification of plasma-activated PP mesh with a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Reaction time and monomer concentration have been optimized to achieve the optimal biocompatibility with reduction in protein adsorption. Attenuated total reflection-Fourier transform infrared spectra confirmed the grafting of the MPC polymer (PMPC) to the plasma-activated polypropylene (PPP) mesh. Scanning electron microscopy images and energy-dispersive X-ray (EDX) line spectra exhibited morphological changes and specifically PMPC grafting to the surface of PPP mesh, due to the presence of a significant amount of phosphorus (P) on the grafted PPP mesh. PMPC-grafted polypropylene (PPP-PMPC) showed a significant reduction in contact angle as well as the amount of adsorbed bovine serum albumin (BSA) protein in comparison with pristine PP mesh. The highest reduction in protein adsorption and the lowest contact angle were achieved at the monomer concentration of 0.3 M and the reaction time of 90 min. A longer reaction time and higher monomer concentration resulted in clogging within the mesh pores. MTT assay results (∼90% cell viability) confirmed the nontoxicity of the PMPC-grafted mesh, while optical microscopic and SEM images showed increased resistance of cell attachment to the surface of PMPC-grafted mesh. The results show that PPP-PMPC can be a promising biomaterial to address the current issues in biocompatibility and reduction in adhesion after surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call