Abstract

Two-dimensional (2D) boron nanomaterials have received considerable attention due to their distinct physicochemical properties in contrast to bulk boron. However, the susceptibility to oxidation in air has limited their practical applications. In this study, we synthesize an environmentally stable bifunctionalized boron nanosheet via a wet chemical route. By lyophilization, we have hierarchically assembled the boron nanosheets into various well-ordered macroscopic forms, which exhibit unique structural features, such as stacking-induced nanochannels for proton transport. The resulting suprastructures show exceptionally high proton conductivity (∼90 mS cm-1 at 85 °C) and humidity sensitivity (response >40 000% at 97% RH). These findings demonstrate the immense potential of boron nanomaterials in electrochemical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.