Abstract
Poly(vinylidene fluoride) (PVDF) with azide-functionalized poly(glycidyl methacrylate) (PGMA) side chains (PVDF-g-P[GMA-(N3)(OH)]) were synthesized via free radical-initiated graft copolymerization of glycidyl methacrylate (GMA) from ozone-pretreated PVDF backbone (PVDF-g-PGMA), followed by reaction of the oxirane rings in the GMA side chains with sodium azide. Alkyne-functionalized poly(N-isopropylacrylamide) (alkynyl-PNIPAM), prepared a priori by atom transfer radical polymerization (ATRP), was used for the click reaction with the azido-containing PGMA side chains of the PVDF-g-P[GMA-(N3)(OH)] copolymer to give rise to the thermoresponsive PVDF-g-P[GMA-click-PNIPAM] copolymer. Both the PVDF-g-P[GMA-(N3)(OH)] and PVDF-g-P[GMA-click-PNIPAM] copolymers can be readily cast into microporous membranes by phase inversion in an aqueous medium. The PVDF-g-P[GMA-(N3)(OH)] microporous membranes with azido-containing surfaces could be further functionalized via surface click reaction with alkyne-terminated PNIPAM of controlled chain lengths to obtain the PVDF-g-P[GMA-click-PNIPAM]surface microporous membranes. The surface composition and morphology of the PVDF-g-P[GMA-click-PNIPAM] membranes can be adjusted by the temperature of casting medium, while the flux through both types of membranes exhibits thermoresponsive behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.