Abstract

BackgroundRaman spectroscopy is an effective tool for detecting and discriminating centrifugally filtered hepatitis B virus serum and centrifugally filtered control serum. ObjectivesThe purpose of current study is to separate high molecular weight fractions from low molecular weight fractions present hepatitis B serum to increase the disease diagnostic ability of surface enhanced Raman spectroscopy (SERS). MethodsClinically diagnosed centrifugally filtered serum samples of hepatitis B patients are subjected for surface enhanced Raman spectroscopy (SERS) in comparison with centrifugally filtered serum samples of healthy individuals by using silver nanoparticles (Ag-NPs) as SERS substrates. Some SERS spectral features are solely observed in centrifugally filtered serum samples of hepatitis B and some SERS spectral are solely observed in centrifugally filtered serum samples of healthy individuals. The diagnostic ability of SERS is further enhanced with different statistical techniques like principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and partial least square regression analysis (PLSR) have applied. ResultsThe disease biomarkers of hepatitis B are more pronounced after their centrifugation as compared with uncentrifuged form. Statistical tools like principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) clearly differentiated centrifugally filtered serum samples of hepatitis B from centrifugally filtered serum samples of healthy individuals. Furthermore, partial least square regression analysis (PLSR) has been applied for predicting unknown viral load of centrifugally filtered serum sample of hepatitis B. ConclusionSERS technique along with chemometric tools have successfully differentiated centrifugally filtered serum samples of hepatitis B from centrifugally filtered serum samples of healthy individuals. The centrifugal filtration process has increased the differentiation accuracy of PLS-DA in terms of percentage 98% and regression accuracy of PLSR regression analysis in terms of RMSEP (0.30 IU/mL) of this diagnostic method as compared with that of uncentrifuged method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call