Abstract

In order to perform SERS (surface-enhanced Raman scattering) measurements, spherical Cu/Cu2O core-shell NPs with a rather rough rugged surface and well-defined crystallographic structures were fabricated using nanosecond Ce: Nd YAG pulsed laser ablation in liquid (PLAL). Raman, Fourier transform infrared (FTIR) spectroscopy and TEM imaging of the prepared NPs reveal the existence of additional minority CuO phase, not determined earlier through XRD patterns. The SERS activity of Cu/Cu2O core-shell NPs substrates was investigated by using crystal violet (CV) and methylene blue (MB) as the analyte molecules under 532 nm excitation wavelength irradiation. The effect of localized surface plasmon resonance (LSPR) from Cu core contributing to the electromagnetic enhancement and Cu2O shell with a rough surface which itself contributes to chemical enhancement with adsorbed analyte molecule is due to a high overall SERS enhancement. The intensities of the totally and non-totally symmetric modes were used to calculate the degree of charge-transfer. The results demonstrate that the LSPR enhancement dominates charge-transfer resonance contribution in SERS of Cu/Cu2O-CV and Cu/Cu2O -MB systems. The reproducibility of the prepared SERS substrates was investigated and the SERS signals intensity variation was <28%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.