Abstract

This paper proposes a system with a surface-acoustic wave (SAWs) to perform noninvasive cell orientation. The system employed a SAW chip with a pair of interdigital transducers (IDTs) to rotate embryos around the X and Y axis using acoustic streaming force. Instead of rotating the entire embryos like other methods, the proposed system rotates the cytoplasm alone through the cell chorion. We evaluated the cellular structure recognition algorithm and the rotation control using 100 embryo images and 30 zebrafish embryos. The system successfully recognized all required cellar structures for visual feedback. Furthermore, it rotated all cells into the desired position, including 26 cases completed within 10s with an orientation angle error of less than 4°. All 30 embryos hatched after manipulation. The proposed technique can automatically rotate the cytoplasm through the cell chorion noninvasively. The system provides a starting point for noninvasive cell manipulation tasks, such as fast intracellular structure scanning and analysis, and microinjection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.