Abstract

Using a dynamic wetting force device, involving a sensitive Wilhelmy balance, surface wetting behaviors of polyester, polypropylene, and cellulose acetate fibers, the last two in several different sizes and cross-sectional shapes, were examined. Assessed were the values of the advancing and the receding contact angles and the work of adhesion with water as the fluid. Conducting tests with deionized water and methylene iodide allowed us to assess the value of the total surface energy along with the values of the polar and the dispersion components of it. In a limited number of tests, the surface properties of polyester and polypropylene films were also determined and compared with those of the fibers. The results generally showed that the energy was largely dispersive, hysteresis in contact angles was low, and while the fiber size and cross-sectional shape did not influence the contact angles or the energy, the surface roughness and crystallinity played significant roles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.