Abstract

Additive manufacturing (AM) has revolutionized the production of complex geometries with superior properties compared with traditional manufacturing methods. However, the high roughness and poor wettability of as-produced surfaces of AM parts limit their suitability for certain applications. To address this, we present a maskless laser-assisted surface functionalization method to improve the wettability of metal 3D printed parts. This study explores the potential of combining metal AM with surface wettability patterning, a promising technique in fluid-related fields. Large-area AlSi10Mg parts were fabricated using laser powder bed fusion (L-PBF), followed by an innovative laser-assisted functionalization (LAF) method to achieve patterned wetting surfaces. The LAF method consists of laser texturing and chemical modification steps, and two strategies were demonstrated to fabricate different types of wettability patterns. Strategy I helps produce two types of superhydrophobicity, while strategy II helps create a superhydrophobic-superhydrophilic patterned surface. The study demonstrates the simplicity, robustness, and feasibility of the process and analyzes the processing mechanism, surface topography, and surface chemistry. The integration of surface wettability patterning and 3D-printing can optimize components to enhance performance and efficiency by creating intricate fluid flow pathways. Overall, this work highlights the potential of combining metal AM with surface wettability patterning, providing a pathway to produce high-performance parts with tailored wettability properties. This research has significant implications for fluid-related industries such as aerospace, automotive, and energy, as it offers unparalleled design freedom and the ability to create complex geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call