Abstract

Frequency- and time-domain measurements have been made on surfaces composed from parallel periodically-spaced rectangular strips (width: 0.0126 m, height: 0.0253 m) on an acoustically hard surface. The edge-to-edge spacing between the strips has been varied between 0.003 and 0.06 m. Frequency domain predictions show that when the spacing is small, these surfaces may be regarded as locally reacting rigid-framed hard-backed slit-pore layers with an effective depth slightly larger than the strip height, but when the spacing is comparable to the strip height or greater, the surfaces behave as periodically rough surfaces. Both frequency- and time-domain results show that surface waves of comparable magnitudes are created over the range of strip spacings studied but the frequency content of the acoustically induced surface waves decreases as the mean spacing is increased. It is found that surface wave dispersion is better predicted by the deduced effective impedance spectrum than by the slit-pore layer impedance model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.