Abstract

AbstractThis paper studies the surface plasma wave excitation via Cerenkov and fast cyclotron interaction by a density modulated electron beam propagating through a magnetized dusty plasma cylinder. The dispersion relation of surface plasma waves has been derived and it has been shown that the phase velocity of waves increases with increase in relative density δ(=nio/ne0,whereni0is the ion plasma density andne0is the electron plasma density) of negatively charged dust grains. The beam radius is taken slightly less than the radius of dusty plasma cylinder. The frequency and the growth rate of the unstable wave instability increases with increase in the value of δ and normalized frequency ω/ωpe. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and square root of beam density in fast cyclotron interaction. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there are no dust grains in the plasma cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.