Abstract
AbstractThis study presents a broad overview of surface gravity wave dynamics in Delaware Bay and the adjacent continental shelf by employing the wave model Simulating Waves Nearshore one‐way coupled to the ocean model Regional Ocean Modeling System for a period from 2006 to 2012. The distributions of simulated wave statistics agree well with observations obtained from three wave buoys located on the shelf, in the bay near the open ocean, and about 35 km up the bay. A partitioning analysis to separate the two‐dimensional wave height spectrum into wind‐forced and swell parts reveals that waves on the shelf are predominantly remotely generated swell. Bathymetric refraction shelters the bay from energetic open ocean waves, which is supported by an idealized ray tracing analysis. Waves near the bay entrance are also refracted by oblique tidal currents, whose refraction characteristics critically depend on the detailed spatial distributions of the currents. Opposing tidal currents, flowing against the wave propagation direction, focus wave energy outside the bay entrance and in the deeper bay channels, where currents are relatively strong. A spectral partitioning analysis for waves in the bay indicates that less energetic wave fields are likely not directly forced by the wind. More energetic waves, on the other hand, are dominantly driven by winds and the wave response in the bay depends on the fetch‐setting wind direction. Our results for wind‐driven waves in the bay are consistent with previous fetch‐limited observations, but we find a systematic bias between wind and wave directions due to bathymetric refraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.