Abstract

The main purpose of this study is to characterize the surface sediments of the Kokumbo artisanal gold mining sites in Metallic trace Elements (MTEs). A total of 12 samples of surface water sediments were collected for this study. The samples were analyzed using the Atomic Absorption Spectrophotometer (AAS). The mean concentrations of Mn (611.37 mg/kg) and Zn (955.86 mg/kg) in the sediments were very high compared to the standard in unpolluted sediments. The enrichment factor (EF) shows that there is an enrichment of Mn at some sites (EF (Mn) > 2). The presence of As, Mn, and Zn is also highlighted by the geo-accumulation index (I-geo) which shows slight pollution in Mn (0 3). This study shows that the presence of Zn in the sediments is linked to artisanal gold mining activities. Indeed, Zn is much used for gold recovery. The statistical analysis (PCA) shows, on the one hand, natural mineralization of the sediments and addition of metals linked to anthropic activities corresponding to the erosion of mining discharges. The surface sediments of the Kokumbo mining sites show pollution in As, Mn, and Zn.

Highlights

  • Throughout the world, mining generally damages the environment by inevitably causing the degradation of the biosphere

  • The concentrations of Metallic trace Elements (MTEs) in sediments in the study area are presented in the following table (Table 3)

  • The study carried out at the artisanal gold mining sites of Kokumbo allows the level of contamination of surface sediments to be determined from their content of MTEs and to identify the sources of sediment contamination

Read more

Summary

Introduction

Throughout the world, mining generally damages the environment by inevitably causing the degradation of the biosphere. The gold mines in operation or abandoned without any rehabilitation are certainly sources of contamination and environmental damage. According to [1], mining activities are considered as fundamental source of heavy metals in the environment. The use of chemical substances (mercury, cyanide, hydrochloric acid, and sulphuric acid) can reduce soil fertility and even contaminate and reduce the quality of water resources [2]. These extraction and mining operations and the disposal of mine wastes, if not controlled, are obvious sources of environmental contamination, of surface sediments

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.