Abstract

We evaluated long-term surface water nitrate and atmospheric nitrogen (N) deposition trends for a group of nine predominantly forested Appalachian Mountain watersheds during a recent multidecadal period (1986-2009) in which regional NOx emissions have been progressively reduced. Statistical analysis showed unexpected linear declines in both annual surface water nitrate-N concentrations (mean =46.4%) and yields (mean =47.7%) among the watersheds corresponding to comparable declines in annual wet N deposition (mean =34.4%) resulting from U.S. NOx emission control programs during the same time period. Nitrate-N concentration trends were robust across a large geographical region and appeared insensitive to watershed size across several orders of magnitude-suggesting that the improvements in water quality are probably propagated to surface and estuarine waters downstream. Surface waters are thus responding to declining atmospheric N deposition in much the same way they responded to declining sulfur deposition-although only one watershed showed a 1:1 relationship. Application of a kinetic N saturation model indicated that all nine forested watersheds are exhibiting signs of N saturation as evidenced by a limited, but variable, efficiency of demand for N. Further reductions in N deposition would be expected to produce additional reductions in streamwater N loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.