Abstract

Mapping of surface water is useful in a variety of remote sensing applications, such as estimating the availability of water, measuring its change in time, and predicting droughts and floods. Using the imagery acquired by currently active Landsat missions, a surface water map can be generated from any selected region as often as every 8 days. Traditional Landsat water indices require carefully selected threshold values that vary depending on the region being imaged and on the atmospheric conditions. They also suffer from many false positives, arising mainly from snow and ice, and from terrain and cloud shadows being mistaken for water. Systems that produce high-quality water maps usually rely on ancillary data and complex rule-based expert systems to overcome these problems. Here, we instead adopt a data-driven, deep-learning-based approach to surface water mapping. We propose a fully convolutional neural network that is trained to segment water on Landsat imagery. Our proposed model, named DeepWaterMap, learns the characteristics of water bodies from data drawn from across the globe. The trained model separates water from land, snow, ice, clouds, and shadows using only Landsat bands as input. Our code and trained models are publicly available at http://live.ece.utexas.edu/research/deepwatermap/ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.