Abstract
The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.