Abstract
Carbon nanodots (CNDs) have attracted substantial scientific curiosity because of their intriguing stimuli-responsive optical properties. However, one obstacle to the more widespread use of CNDs as transducers for e.g., biodetection systems is incomplete knowledge regarding the underlying chemical changes responsible for this responsiveness, and how these chemical features can be engineered via the precursors chosen for CND synthesis. This study demonstrates that the precursor's functional groups play a key role in directing N/S/Se heteroatom dopants either towards the surface of the CNDs, towards the aromatic core, or towards small organic fluorophores in the core. Divergent optical properties, which were consistent amongst groups of CNDs prepared with similar precursors, were obtained including either a decrease or increase of fluorescence intensity in the presence of hydrogen peroxide. Moreover, CNDs were identified with orthogonal responsiveness to radical (hydroxyl radicals, ˙OH; down to 2.5 μM) vs. non-radical oxidants (H2O2; down to 50 μM), which suggests that control of the chemistry of CNDs via the choice of precursor could yield probes that are specific to certain sub-species of reactive oxygen species or entirely different molecules altogether, based on the way they chemically-modify the surface (respond faster) and core functional groups (respond slower) associated with chromophores/fluorophores of which the CNDs are composed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.