Abstract
The precise determination of surface transport coefficients at liquid interfaces is critical to an array of processes, ranging from atmospheric chemistry to catalysis. Building on our prior results that highlighted the emergence of a greatly reduced surface viscosity in simple liquids via the dispersion relation of surface excitations [Malgaretti et al., J. Chem. Phys. 158, 114705 (2023)], this work introduces a different approach to directly measure surface viscosity. We use modified Green-Kubo relations suitable for inhomogeneous systems to accurately quantify viscosity contributions from fluid slabs of variable thickness through extensive molecular dynamics simulations. This approach distinguishes the viscosity effects of the surface layer vs the bulk, offering an independent measure of surface viscosity and providing a more detailed understanding of interfacial dynamics and its transport coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.