Abstract

Platinum group metal dichalcogenides (PtTe2) with controllable thickness have been synthesized and confirmed to be promising electric and spintronic materials. Here, using the first-principles calculations, we demonstrate the potential application of PtTe2 as catalyst substrate. Taking CO oxidation as model reaction, the importance of surface vacancy is clarified. It is found that surface vacancy on PtTe2 could improve the stability and catalytic activity of the supported Pt atom. The details of CO oxidation processes indicate that surface vacancy could weaken the adsorption of reactants and speed up the formation and decomposition of OOCO intermediate on Pt catalysts. The underlying mechanisms for the improved activity are unveiled through comprehensively analyzing the charge transfer, density of states, and charge density difference. We hope that the current findings were beneficial for the research and development of efficient catalysts by collocating various single atom/cluster catalysts with different platinum group metal dichalcogenides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.