Abstract

The development of urbanization has changed the original land cover and exacerbated the urban heat island effect, seriously affecting the sustainable development of the ecological environment. Research on urban heat island characteristics and land cover changes in five major urban agglomerations in China to provide a reference for preventing thermal environmental risks and urban agglomeration construction planning. This paper estimates the surface urban heat island intensity (SUHII) of the five major urban agglomerations in China from 2003 to 2019 based on Google Earth Engine (GEE) through the urban-rural dichotomy, analyzes their trends through the Sen + M-K trend analysis method, and combines the detrending rate matrix to analyze the impact of land cover type shift on urban heat island change. Research shows that (1) the land cover types of the five major urban agglomerations in China have changed considerably from 2003 to 2019, and all five major urban agglomerations in China experienced varying degrees of urban expansion. (2) The annual average value of SUHII decreases in Beijing-Tianjin-Hebei, Yangtze River Delta, and middle reaches of the urban agglomerations, while the annual average value of SUHII increases in Chengdu-Chongqing and Pearl River Delta urban agglomerations. (3) The spatial composition of land cover types in the five major urban agglomerations in China is highly spatially correlated with urban heat islands, with urban land and bare land urban heat islands being the most pronounced. (4) The land cover type shift has the most significant heat island impact on Beijing-Tianjin-Hebei, Yangtze River Delta, and Chengdu-Chongqing urban agglomerations. (5) The land cover change (LCC) with an increasing trend in SUHII is mainly bare land converted to arable land, and water bodies, grassland, forest land, and arable land converted to urban land.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.