Abstract

Information on the turbulent fluxes of momentum, latent heat, and sensible heat at the air–sea interface is essential in improving model simulations of climate variations and in climate studies. A 13.5-yr (July 1987–December 2000) dataset of daily surface turbulent fluxes over global oceans has been derived from the Special Sensor Microwave Imager (SSM/I) radiance measurements. This dataset, Goddard Satellite-based Surface Turbulent Fluxes, version 2 (GSSTF2), has a spatial resolution of 1° × 1° latitude–longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP–NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory. The GSSTF2 bulk flux model is validated by comparing hourly turbulent fluxes computed from ship data using the model with those observed fluxes of 10 field experiments over the tropical and midlatitude oceans during 1991–99. In addition, the GSSTF2 daily wind stress, latent heat flux, wind speed, surface air humidity, and SST compare reasonably well with those of the collocated measurements of the field experiments. The global distributions of 1988–2000 annual- and seasonal-mean turbulent fluxes show reasonable patterns related to the atmospheric general circulation and seasonal variations. Zonal averages of latent heat fluxes and input parameters over global oceans during 1992–93 have been compared among several flux datasets: GSSTF1 (version 1), GSSTF2, the Hamburg Ocean–Atmosphere Parameters and Fluxes from Satellite Data (HOAPS), NCEP–NCAR reanalysis, and one based on the Comprehensive Ocean–Atmosphere Data Set (COADS). Significant differences are found among the five. These analyses suggest that the GSSTF2 latent heat flux, surface air humidity, and winds are likely to be more realistic than the other four flux datasets examined, although those of GSSTF2 are still subject to regional biases. The GSSTF2 is useful for climate studies and has been submitted to the sea surface turbulent flux project (SEAFLUX) for intercomparison studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.