Abstract
AbstractFlow in rivers and the coastal ocean is controlled by the frictional force exerted on the water by riverbed or seabed roughness. The frictional force is typically characterized by a drag coefficient Cd, which is estimated from bulk measurements and often assumed constant. Here, we demonstrate a relationship between bed roughness and water surface turbulence that can be used to make remote estimates of Cd. We observe that regions with larger bed roughness result in greater turbulent kinetic energy (TKE), which is transported upward by river boils to the water surface. We present a relationship between surface TKE and Cd, and validate this relationship by comparing remotely sensed estimates of Cd to those from in situ measurements. Thus, our results provide an approach for estimating bottom roughness and Cd based entirely on remotely sensed data, including their spatial variability, which can improve modeling of river discharge and morphodynamics in data‐poor regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.