Abstract

Sn is a candidate anode material for high energy density Li-ion batteries, owing to its high specific capacity, low cost, and high electronic conductivity, but its practical applications are hindered by mechanical degradation induced by the large volume change during cycling. Graphene can be used as a buffer material for Sn volume expansion while also improving mechanical strength and electronic conductivity of the composite structure. We report here the synthesis of a composite of Sn nanoparticles and graphene through surface functionalization of graphene using diazonium grafting and subsequent Sn nanoparticle deposition. We further applied two types of surface treatments on the anode surface to improve the nucleation of the solid electrolyte interphase, which is formed due to the reduction of the electrolyte solution. These treatments include refunctionalizing the anode surface with graphene oxide sheets or sulfophenyl groups, which provide ample sites on the anode surface for the nucleation of the soli...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.