Abstract
The use of simple (SN) or functionalized (FN) silicon nanoparticles in three variants of surface treatments to mitigate the physical sulfate attack was evaluated in mortar specimens made with ordinary portland cement (OPC) or sulfate resistant cement (SR). The treatment variants were: T1 – with a 0.1% suspension of SN, applied by immersion, in the first 72 h of cure; T2 – with a 0.1% suspension of FN, applied by brushing after 28 days of hydration; and T3 – consecutive application of T1 and T2. Subsequently, the specimens were partially immersed in a 5% sodium sulfate solution and subjected to wetting and drying cycles. A physical-chemical characterization was carried out utilizing XRD, XRF, and SEM/EDS and the surface contact angle was determined regularly during the exposure. The results were complemented with a visual analysis of the specimens at the end of the exposure. The results showed that, although the specimens treated with T1, T2 and T3 show a certain degree of deterioration caused by the physical sulfate attack, the treatments have contributed to preventing the entry of the sulfate solution at the beginning of the exposure. Therefore, it is concluded that the treatments are effective in the initial stages of exposure to the physical sulfate attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.