Abstract
Copper nanowires (Cu NWs) are promising materials for fabricating low-cost, flexible, transparent, and conductive films. However, their synthesis typically requires capping agents and their surfaces are easily oxidized, hindering NW performance. In this study, the surfaces of polyvinylpyrrolidone (PVP)-stabilized Cu NWs were treated with hydroxy acids to create impurity-free Cu junctions between the NWs. The PVP on the NW surfaces was removed in hydroxy acid solutions under neutral conditions, followed by surface oxidation. The oxides were more stable than the adsorbed PVP; therefore, this treatment completely converted PVP-stabilized surfaces into oxide-covered surfaces. The oxides were then eliminated and their surfaces were stabilized by hydroxy acids under acidic conditions. Among the tested acids, citric acid completely removed the surface oxides and best protected the NW surfaces, resulting in oxide-free Cu NWs. This treatment was then applied in combination with vacuum filtration to fabricate transparent conductive films comprised of Cu NWs. The surface treatment substantially improved the sheet resistance and transmittance of the film from 583.3 Ω/sq and 84% (at 550 nm) to 81.7 Ω/sq and 86%, respectively. The simple treatment process developed herein is expected to be widely applied to improve Cu NW performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.