Abstract

Poly(lactic acid) (PLA)/jute fiber biocomposites with: i) untreated jute fiber, ii) NaOH treated jute fiber, and iii) (NaOH+silane) treated jute fibers were prepared by melt extrusion process. Microcellular foaming of the injection molded samples was carried out by using single stage batch process. The effects of jute fiber content as well as that of matrix-fiber phase adhesion, in composites with surface treated jute fibers, on the foam microstructure were studied. Further, water absorption, thickness swelling, and biodegradation behavior of the foamed biocomposites were studied and correlated with their foam microstructures. It was observed that on increasing jute fiber content in PLA/JFU biocomposites, cell density increased from 6.5×107 to 8.1×107, while the cell size and expansion ratio decreased from 40 to 23 μm and 2.41 to 1.45, respectively. Again, on increasing the extent of the jute fiber surface treatment in the biocomposites, cell size and expansion ratio increased from 40 to 78 μm and 2.41 to 2.80 respectively. This study also revealed that the rate of biodegradation accelerated with increase in the jute fiber content in the biocomposites while the same retarded with increase in the extent of jute fiber surface treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call