Abstract
It is widely accepted that sandblasted/large-grit/acid-etched (SLA) surfaces of titanium (Ti) have a higher osteogenic potential than machined ones. However, most studies focused on differential gene expression without elucidating the underlying mechanism for this difference. The aim of this study was to evaluate how the surface roughness of dental Ti implants affects their osteogenic potential. Mouse preosteoblast MC3T3-E1 cells were seeded on machined and SLA Ti discs. The cellular activities of the discs were analyzed using confocal laser scanning microscopy, proliferation assays, and real-time polymerase chain reaction (PCR). DNA methylation was evaluated using a methylation-specific PCR. The cell morphology was slightly different between the two types of surfaces. While cellular proliferation was slightly greater on the machined surfaces, the osteogenic response of the SLA surfaces was superior, and they showed increased alkaline phosphatase (Alp) activity and higher bone marker gene expression levels (Type I collagen, Alp, and osteocalcin). The degree of DNA methylation on the Alp gene was lower on the SLA surfaces than on the machined surfaces. DNA methyltransferase inhibitor stimulated the Alp gene expression on the machined surfaces, similar to the SLA surfaces. The superior osteogenic potential of the SLA surfaces can be attributed to a different epigenetic landscape, specifically, the DNA methylation of Alp genes. This finding offers novel insights into epigenetics to supplement genetics and raises the possibility of using epidrugs as potential therapeutic targets to enhance osteogenesis on implant surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.