Abstract

AbstractThe abnormal deformation of urban surfaces threatens the human living environment, and extreme regional weather can affect the response law of surface deformation. To explore the changes in surface time series response after extreme weather and the causes of deformation in Zhengzhou, the MTInSAR was used to obtain the surface deformation from 2020 to 2022, and the time series changes of groundwater equivalent water height were retrieved by GRACE. The results show that: (a) There are three large subsidence bowls in Zhengzhou, and the maximum subsidence rate is −40.2 mm/yr. (b) The extreme rainstorm in Zhengzhou alleviated the surface deformation quickly, lasting approximately 6 months. However, surface subsidence still occurred after the extreme rainstorm. The water storage coefficient of the elastic skeleton in the Zhengzhou area showed an increasing trend. (c) Precipitation can lead to surface uplift by influencing the change of groundwater level. There is a delay time of 0.75–1 month between groundwater level change and surface uplift response in the characteristic region. These results provide scientific data support and causal analysis for disaster prevention and reduction of abnormal deformation in Zhengzhou.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.