Abstract

Atomic force microscopy (AFM) was used to study the influence of a membrane protein, lactose permease of Escherichia coli (LacY), on the surface spreading behavior and the features of self-assembled phospholipids bilayers on mica. The miscibility of phospholipids used, 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC), was investigated by surface pressure area isotherm measurements at the air–water interface. A composition with an equimolar proportion of POPC and DMPC was used to form the liposomes. Surface layers formed with DMPC:POPC (0.5:0.5, mol/mol) or LacY reconstituted in proteoliposomes with the same phospholipid composition were imaged by using AFM. When lactose permease was reconstituted in DMPC:POPC (0.5:0.5, mol/mol), self-assembled structures that remained firmly adsorbed onto the mica surface were observed. These sheets had an irregular shape and their upper layer was more corrugated than that obtained for the phospholipid matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.