Abstract

Hematite (α-Fe2O3) is the most stable and abundant iron oxide in nature, and is used in many important environmental and industrial technologies, such as waste-water treatment, gas sensors, and photoelectrocatalysis. A clear understanding of the structure, composition, and chemistry of the hematite surface is crucial for improving its function in these technologies. Here we employ density functional theory (DFT) together with the DFT+U approach using semi-local functionals, as well as hybrid functionals, to study the structure, stability, and electronic properties of the (0 0 0 1) surface exposed to oxygen, hydrogen, or water. The use of hybrid functionals allow for a description of strong correlation without the need for atom-specific empirical parameters (i.e. U). However, we find that PBE+U, and in part also PBE, give similar results as the hybrid functional HSE(12%) in terms of structure optimization. When it comes to stability, work function, as well as electronic structure, the results are sensitive to the choice of functionals, but we cannot judge which level of functional is most appropriate due to the lack of experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.