Abstract

Two-dimensional MXenes have recently garnered significant attention as electrocatalytic materials for hydrogen evolution reaction (HER). However, previous theoretical studies mainly focused on the effect of pure functional groups while neglecting hybrid functional groups that are commonly observed in experiments. Herein, we investigated the hybrid functionalized Mo2CTx MXene (T=-O, -F or -OH) to probe the HER properties. In binary O/F co-functionalization, the presence of F groups would attenuate the H adsorption and lead to the enhanced HER activity than the fully O-terminated Mo2CO2. However, the surface HER activity of ternary O/F/OH functionalized Mo2CTx is not satisfactory owing to the relatively weak H adsorption capacity. To further enhance the catalytic activity, modification was performed by introducing another metal element into its lattice structure. The doped metal (Fe, Co, Ni, Cu) exhibits reduced charge transfer to O compared to Mo atoms, leading to enhanced H adsorption and improved overall activity. The synergistic effect of hybrid functionalization and TM modification provides useful guidance for achieving feasible Mo2CTx candidates with high HER performance, which can be applied to the electrocatalytic applications of other MXenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.