Abstract

Investigations on two different surface terminated (0001) slabs of RT5 (R=Y, Ce, Sm and T=Fe, Co, Ni) compounds are performed by first principles calculations, in order to compare their structural stability, magnetic, and electronic properties. In bulk RT5 compounds, atomic sub-layers – RT2 (R-rich) and T3 (T-rich) – are alternatively stacked along z-axis. Therefore, two different RT5 (0001) slabs are constructed with terminating R-rich and T-rich sub-layers at both top and bottom of surfaces. Our calculations show that T-rich slabs are having higher structural stability owing to charge smoothing and inward relaxations of atoms at the surface, whereas R-atoms presented in the surface of slabs, particularly 4f elements experience outward relaxation as a consequence of corrugated surface charge density. The reason for inward and outward relaxations of respective atoms is quantitatively understood by the Bader charge analysis. Our results suggest that as the Co and Fe-rich surface slabs possess high structural stability and enhanced spin moment when compared to respective R-rich slabs, they can be potentially used for fabricating the multilayered exchange spring magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.