Abstract

The surface tension of various whole wheys, solutions of component whey proteins, UF fractions, and the effect of heating on the surface tensions of these solutions were determined using the Wilhemy plate method. The mean surface tension of three commercial cottage cheese wheys, a commercial cheddar cheese whey, and a laboratory rennet whey was found to be 41.7±1.2 dyne/cm (25°C) and did not vary significantly with the type of whey despite differences in both pH and protein content. The surface tensions of aqueous solutions of individual pure protein fractions of whey (serum albumin, β-lactoglobulin, α-lactalbumin, and gammaglobulins), in concentrations approximating normal whey contents, were significantly different and greater than for the whole wheys.Heating of individual protein solutions at 80°C for 50min produced insignificant changes in measured surface tension despite producing protein precipitation in some of the solutions. Similar heating of the whole whey solutions resulted in a significant decrease in surface tension and marked precipitation in most cases.The fractionation of the wheys into UF permeates and retentates resulted in a retentate fraction of significantly lower surface tension than for UF permeates. Heating increased the surface tension of retentate fractions while the permeate fractions showed a decrease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call