Abstract

The surface tension of aqueous solutions of simple inorganic electrolytes (36 in total) have been measured by the maximum bubble pressure method as a function of electrolyte concentration up to 1M.In most cases the surface tension increased, however in a minority of cases, certain combinations of cations and anions had a negligible effect or decreased surface tension. Results were analysed in terms of surface tension/electrolyte concentration gradients (d(Δγ)/dc) and this parameter was found to correlate with the entropies of ion hydration, Jones–Dole viscosity coefficients and dissolved oxygen gradients. Calculation of Gibbs surface deficiencies for selected electrolytes were carried out using the raw surface tension data. Discussion of the surface tension/electrolyte concentration gradients was extended to the mechanism of inhibition of bubble coalescence by electrolytes. The Gibbs–Marangoni effect did not provide a satisfactory explanation for the inhibition of coalescence for all electrolytes and from the present study we suggest that dissolved gas (microbubble) gradients between macroscopic bubbles plays an important role in the coalescence process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.