Abstract

A microscopic analysis is presented of the existing definitions of equilibrium surface tension, which can be divided into two types: mechanical and thermodynamic. Each type of definition can be studied from the presentation below according to thermodynamic hypotheses or molecular calculations. An analysis of the planar interface is given and its generalization for curved (spherical) interfaces is considered. The distinction between approaches describing the surface tension of metastable and equilibrium droplets is discussed. Based on nonequilibrium thermodynamics, it is shown that the introduction of metastable droplets is due to a violation of the relationship between the times of impulse and chemical potential relaxation in condensed phases. Problems of calculating the surface tension in nonequilibrium situations are created.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.