Abstract

The surface tensions of liquid metals, Zr, Ni, Ti, Mo, and Nb, have been measured at their melting points using the quasi-containerless pendant drop method. This method involves melting the end of a high-purity metal rod by bombardment with an electron beam to form a pendant drop under ultrahigh-vacuum conditions to minimize surface contamination. The magnified image of the drop is captured from a high-resolution CCD camera and digitized using a frame-grabber. The digital image is analyzed by reading the pixel intensities from a graphics file. The edge coordinates of the drop along rows and columns of pixels are searched by a computer program and stored in an array. An optimized theoretical drop shape is computed from the edge coordinates by solving the Young–Laplace differential equation to deduce the surface tension. The measured surface tensions are compared with available experimental results and theoretical calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.