Abstract

We extend rainbow refractometry to quantify the oscillations of a droplet in its fundamental mode. The oscillation parameters (frequency and amplitude damping), extracted using the time-resolved rainbow angular shift, are utilized to measure surface tension and viscosity of the liquid. Proof-of-concept experiments on an oscillating droplet stream produced by a monodisperse droplet generator are conducted. Results show that the relative measurement errors of surface tension and viscosity are 1.5% and 8.4% for water and 5.3% and 2.5% for ethanol. This approach provides an alternative mean for characterizing liquid surface properties, e.g., dynamic surface tension and viscosity, especially for liquids with a low Ohnesorge number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.