Abstract
The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitative evaluation of surface tension in the bridge have not been evaluated. We present combined theoretical and experimental studies on this issue. Electrostriction is pointed out to be the driving force that pushes liquid upward against gravity and into the gap between two containers and forms the suspended bridge, which is within the framework of the Maxwell pressure tensor. Through a comparison between experiment and theory, the surface tension is found to play an important role in holding the long suspended bridge. Ignorance of the surface tension leads to much smaller bridge length than the experimental values. The dynamic stability of the bridge with respect to its diameter, length and conductance is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.