Abstract

Surface tension and dilational viscoelasticity of solutions of various surfactants measured with bubble and drop profile analysis tensiometry are discussed. The study also includes experiments on the co-adsorption of surfactant molecules from a solution drop and alkane molecules from saturated alkane vapor phase. Using experimental data for 12 surfactants with different surface activities, it is shown that depletion due to adsorption of surfactant from the drop bulk can be significant. An algorithm is proposed quantitatively to take into consideration the depletion effect which is required for a correct description of the co-adsorption of alkanes on the solution drop surface and the correct analysis of experimental dynamic surface tension data to determine the adsorption mechanism. Bubble and drop profile analysis tensiometry is also the method of choice for measuring the dilational viscoelasticity of the adsorbed interfacial layer. The same elasticity moduli are obtained with the bubble and drop method only when the equilibrium surface pressures are sufficiently small (Π < 15 mN m−1). When the surface pressure for a surfactant solution is larger than this value, the viscoelasticity moduli determined from drop profile experiments become significantly larger than those obtained from bubble profile measurements.

Highlights

  • Studies of surface tension and adsorption of surfactants and polymers at liquid/fluid interfaces constitute an important branch of surface science

  • Drop and bubble profile analysis tensiometry have been widely used by various authors into study surface tension and dilation viscoelasticity of various systems, such as aqueous solutions of surfactants, proteins, or their mixtures [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36]

  • Equilibrium Surface Tension Measured by Drop Profile Analysis Tensiometry

Read more

Summary

Introduction

Studies of surface (interfacial) tension and adsorption of surfactants and polymers (proteins) at liquid/fluid interfaces constitute an important branch of surface science. Drop and bubble profile analysis tensiometry have been widely used by various authors into study surface tension and dilation viscoelasticity of various systems, such as aqueous solutions of surfactants, proteins, or their mixtures [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] These methods provide relatively simple procedures to obtain important experimental data which characterise the surface (adsorption) activity of substances, the competitive adsorption and interrelation between surfactants and various additives in mixed solutions. The volume of studied solutions could be as low as a few millilitres,

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call