Abstract

Understanding the balance between incoming radiation from the Sun and outgoing radiation from Earth is of critical importance in the study of climate change on Earth. As the only natural satellite of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows for a focus on the solar radiation during its daytime, and on terrestrial radiation during its nighttime. Additionally, lunar regolith temperature is an amplifier of the terrestrial radiation signal because lunar temperature is proportional to the fourth square root of radiation as such is much more sensitive to the weak terrestrial radiation in nighttime than the strong solar radiation in daytime. Indeed, the long-term lunar surface temperature time series obtained inadvertently by the Heat Flow Experiment at the Apollo 15 landing site three decades ago may be the first important observation from deep space of both incoming and outgoing radiation of the terrestrial climate system. A revisit of the lunar surface temperature time series reveals distinct characteristics in lunar surface daytime and nighttime temperature variations, governed respectively by solar and terrestrial radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.